13 research outputs found

    Strengthening the Bolivian pharmacovigilance system: New surveillance strategies to improve care for Chagas disease and tuberculosis.

    Get PDF
    "Chagas disease (CD) and tuberculosis (TB) are important health problems in Bolivia. Current treatments for both infections require a long period of time, and adverse drug reactions (ADRs) are frequent. This study aims to strengthen the Bolivian pharmacovigilance system, focusing on CD and TB. A situation analysis of pharmacovigilance in the Department of Cochabamba was performed. The use of a new local case report form (CRF) was implemented, together with the CRF established by the Unidad de Medicamentos y Tecnolog\xC3\xADa en Salud (UNIMED), in several healthcare centers. Training and follow-up on drug safety monitoring and ADR reporting was provided to all health professionals involved in CD and TB treatment. A comparative analysis of the reported ADRs using the CRF provided by UNIMED, the new CRF proposal, and medical records, was also performed. Our results showed that out of all patients starting treatment for CD, 37.9% suffered ADRs according to the medical records, and 25.3% of them were classified as moderate/severe (MS). Only 47.4% of MS ADRs were reported to UNIMED. Regarding TB treatment, 9.9% of all patients suffered ADRs, 44% of them were classified as MS, and 75% of MS ADRs were reported to UNIMED. These findings show that the reinforcement of the Bolivian pharmacovigilance system is an ambitious project that should involve a long-term perspective and the engagement of national health workers and other stakeholders at all levels. Continuity and perseverance are essential to achieve a solid ADR reporting system, improving patient safety, drug efficacy and adherence to treatment.

    Anti-Trypanosoma cruzi Activity of Metabolism Modifier Compounds

    Get PDF
    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects over 6 million people worldwide. Development of new drugs to treat this disease remains a priority since those currently available have variable efficacy and frequent adverse effects, especially during the long regimens required for treating the chronic stage of the disease. T. cruzi modulates the host cell-metabolism to accommodate the cell cytosol into a favorable growth environment and acquire nutrients for its multiplication. In this study we evaluated the specific anti-T. cruzi activity of nine bio-energetic modulator compounds. Notably, we identified that 17-DMAG, which targets the ATP-binding site of heat shock protein 90 (Hsp90), has a very high (sub-micromolar range) selective inhibition of the parasite growth. This inhibitory effect was also highly potent (IC50 = 0.27 μmol L−1) against the amastigote intracellular replicative stage of the parasite. Moreover, molecular docking results suggest that 17-DMAG may bind T. cruzi Hsp90 homologue Hsp83 with good affinity. Evaluation in a mouse model of chronic T. cruzi infection did not show parasite growth inhibition, highlighting the difficulties encountered when going from in vitro assays onto preclinical drug developmental stages

    Plasma-Derived Extracellular Vesicles as Potential Biomarkers in Heart Transplant Patient with Chronic Chagas Disease

    Get PDF
    Chagas disease is emerging in countries to which it is not endemic. Biomarkers for earlier therapeutic response assessment in patients with chronic Chagas disease are needed. We profiled plasma-derived extracellular vesicles from a heart transplant patient with chronic Chagas disease and showed the potential of this approach for discovering such biomarkers.Barcelona Institute for Global Health (ISGlobal) receives support from the Spanish Ministry of Science, Innovation and Universities through the Centro de Excelencia Severo Ochoa 2019–2023 Program (CEX2018-000806-S). ISGlobal and Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP) are members of the Centres de Recerca de Catalunya (CERCA Program), Generalitat de Catalunya. Work in the laboratory of C.F.B. is funded by Fundació La Marató de TV3 (reference 566/U/2018) and Fundación Mundo Sano. This project was co-financed by the European Union through the European Regional Development Fund with the support of Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya. N.C., M.G., J.G., and M.J.P. receive funds from the Redes temáticas de investigación cooperativa en salud (RETICS), Spanish Tropical Diseases Network “RD12/0018/0010” and from the Agencia de Gestió d’Ajuts Universitaris i de Recerca, Generalitat de Catalunya; grant “2017 SGR 00924.” M.G., C.B., J.G., M.J.P., and I.C.A. belong to the Ibero-American Nuevas Herramientas para el Diagnóstico y la Evaluación del Paciente con Enfermedad de Chagas network. I.C.A. is partially supported by grants no. 2G12MD007592 and 5U54MD007592 from the National Institute on Minority Health and Health Disparities of the US National Institutes of Health. We are grateful to the Biomolecule Analysis Core Facility at University of Texas at El Paso, Border Biomedical Research Center, funded by National Institute on Minority Health and Health Disparities grants 2G12MD007592 and 5U54MD007592. M.T.M. received a PhD fellowship from the Science Without Borders Program, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil.S

    Novel purine chemotypes with activity against Plasmodium 2 falciparum and Trypanosoma cruzi

    Get PDF
    Malaria and Chagas disease, caused by Plasmodium spp. and Trypanosoma cruzi parasites, remain important global health problems. Available treatments for those diseases present several limitations, such as lack of efficacy, toxic side effects, and drug resistance. Thus, new drugs are urgently needed. The discovery of new drugs may be benefited by considering the significant biological differences between hosts and parasites. One of the most striking differences is found in the purine metabolism, because most of the parasites are incapable of de novo purine biosynthesis. Herein, we have analyzed the in vitro anti-P. falciparum and anti-T. cruzi activity of a collection of 81 purine derivatives and pyrimidine analogs. We firstly used a primary screening at three fixed concentrations (100, 10, and 1 µM) and progressed those compounds that kept the growth of the parasites < 30% at 100 µM to dose–response assays. Then, we performed two different cytotoxicity assays on Vero cells and human HepG2 cells. Finally, compounds specifically active against T. cruzi were tested against intracellular amastigote forms. Purines 33 (IC50 = 19.19 µM) and 76 (IC50 = 18.27 µM) were the most potent against P. falciparum. On the other hand, 6D (IC50 = 3.78 µM) and 34 (IC50 = 4.24 µM) were identified as hit purines against T. cruzi amastigotes. Moreover, an in silico docking study revealed that P. falciparum and T. cruzi hypoxanthine guanine phosphoribosyltransferase enzymes could be the potential targets of those compounds. Our study identified two novel, purine-based chemotypes that could be further optimized to generate potent and diversified anti-parasitic drugs against both parasites.SAF2016-76080-R (Spanish Ministry of Economy (AEI/FEDER, UE))PID2019-110810RB-I00 (Spanish Ministry of Science and Innovation)Generalitat of Catalonia Universities and Research Department, Spain (AGAUR; 2017SGR00924)Carlos III Health Institute (ISCIII)RICET Network for Cooperative Research in Tropical Diseases (ISCIII; RD12/0018/0010)Generalitat of Catalonia Department of Health (PERIS 2016–2010 SLT008/18/00132)Spanish Ministry of Education, Culture, and Sports (FPU grant ref. 14/00818)Spanish Ministry of Science, Innovation, and Universities through the “Centro de Excelencia Severo Ochoa 2019–2023” Program (CEX2018-000806-S)CERCA Progra

    Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD

    Get PDF
    The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    Extracellular Vesicles in Trypanosoma cruzi Infection: Immunomodulatory Effects and Future Perspectives as Potential Control Tools against Chagas Disease.

    No full text
    Chagas disease, caused by the protozoa parasite Trypanosoma cruzi, is a neglected tropical disease and a major public health problem affecting more than 6 million people worldwide. Many challenges remain in the quest to control Chagas disease: the diagnosis presents several limitations and the two available treatments cause several side effects, presenting limited efficacy during the chronic phase of the disease. In addition, there are no preventive vaccines or biomarkers of therapeutic response or disease outcome. Trypomastigote form and T. cruzi-infected cells release extracellular vesicles (EVs), which are involved in cell-to-cell communication and can modulate the host immune response. Importantly, EVs have been described as promising tools for the development of new therapeutic strategies, such as vaccines, and for the discovery of new biomarkers. Here, we review and discuss the role of EVs secreted during T. cruzi infection and their immunomodulatory properties. Finally, we briefly describe their potential for biomarker discovery and future perspectives as vaccine development tools for Chagas Disease

    Identification of Trypanosoma cruzi Growth Inhibitors with Activity In Vivo within a Collection of Licensed Drugs

    No full text
    Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), affects more than six million people worldwide, with its greatest burden in Latin America. Available treatments present frequent toxicity and variable efficacy at the chronic phase of the infection, when the disease is usually diagnosed. Hence, development of new therapeutic strategies is urgent. Repositioning of licensed drugs stands as an attractive fast-track low-cost approach for the identification of safer and more effective chemotherapies. With this purpose we screened 32 licensed drugs for different indications against T. cruzi. We used a primary in vitro assay of Vero cells infection by T. cruzi. Five drugs showed potent activity rates against it (IC50 &lt; 4 µmol L−1), which were also specific (selectivity index &gt;15) with respect to host cells. T. cruzi inhibitory activity of four of them was confirmed by a secondary anti-parasitic assay based on NIH-3T3 cells. Then, we assessed toxicity to human HepG2 cells and anti-amastigote specific activity of those drugs progressed. Ultimately, atovaquone-proguanil, miltefosine, and verapamil were tested in a mouse model of acute T. cruzi infection. Miltefosine performance in vitro and in vivo encourages further investigating its use against T. cruzi

    Strengthening the Bolivian pharmacovigilance system: New surveillance strategies to improve care for Chagas disease and tuberculosis.

    No full text
    Chagas disease (CD) and tuberculosis (TB) are important health problems in Bolivia. Current treatments for both infections require a long period of time, and adverse drug reactions (ADRs) are frequent. This study aims to strengthen the Bolivian pharmacovigilance system, focusing on CD and TB. A situation analysis of pharmacovigilance in the Department of Cochabamba was performed. The use of a new local case report form (CRF) was implemented, together with the CRF established by the Unidad de Medicamentos y Tecnología en Salud (UNIMED), in several healthcare centers. Training and follow-up on drug safety monitoring and ADR reporting was provided to all health professionals involved in CD and TB treatment. A comparative analysis of the reported ADRs using the CRF provided by UNIMED, the new CRF proposal, and medical records, was also performed. Our results showed that out of all patients starting treatment for CD, 37.9% suffered ADRs according to the medical records, and 25.3% of them were classified as moderate/severe (MS). Only 47.4% of MS ADRs were reported to UNIMED. Regarding TB treatment, 9.9% of all patients suffered ADRs, 44% of them were classified as MS, and 75% of MS ADRs were reported to UNIMED. These findings show that the reinforcement of the Bolivian pharmacovigilance system is an ambitious project that should involve a long-term perspective and the engagement of national health workers and other stakeholders at all levels. Continuity and perseverance are essential to achieve a solid ADR reporting system, improving patient safety, drug efficacy and adherence to treatment

    Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity

    Get PDF
    Altres ajuts: Fundació La Marató TV3, projectes 201521-10 87/C/2016Background: Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. Methods: We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre+-LRP1flox/flox). Findings: Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1−/−) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1−/− mice showed ANP signalingactivation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1−/− mice. Conclusions: These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism
    corecore